
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD830877

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; DEC
1967. Other requests shall be referred to
Defense Advanced Research Projects Agency, 675
North Randolph Street, Arlington, VA 22203-
2114. This document contains export-controlled
technical data.

DARPA ltr, 25 Jul 1973



JG-955 

IECEMBER 1967 

*opy No.   c 

Technical Memorandum 

STATISTICAL ANALYSIS 
OF RADAR TARGET SCINTILLATION 

by E. SHOTLAND 

D D C 

APR 2 9 »8^ 

THE JOHNS HOPKINS UNIVERSITY ■ APPLIED PHYSICS LABORATORY 

This document it wbjecr to special export contrail and «ach tranimlttal 
to foreign government* or foreign nafionaii may be node only with prior to foreign governments or foreign notionan may be made only with prior y , 

FOR OFFICIAL USE ONLY f^  '      ' 

U? 



\  7'       TG-955 

DECEMBER 1967 

Technical Memorandum 

STATISTICAL ANALYSIS 
OF RADAR TARGET SCINTILLATION 

by E. SHOTLAND 

SPONSORED BY ARPA UNDER AO #479 

THE JOHNS HOPKINS UNIVERSITY ■ APPLIED PHYSICS LABORATORY 
8621 Georgia Avenue, Silver Spring, Maryland 20910 

Operating under Contract NOw 62-0604-c with the Department of the Navy 

This docuintnt ii subject to special «xport controli and aach frai»m!ttal 
to fortign govtrnmtnN or foraign nationalt may be stadrv only wirti prior 
approval of Advancnd Roworch Projects Agency. 

FOR OFFICIAL USE ONLY 



4 

S / 

AmJCD fHYStCS LABORATORY 

ABSTRACT 

n, 

r; 

A new theoretical approach to the problem of radar- 

target scintillation was developed.  It was applied to slender, 

axially symmetrical targets that are much longer than the RF 

wave length.  The radar scintillation is analyzed and described 

in terms of statistical parameters.  The following sets of quantities 

were derived and computed: 

(a) mean radar cross sections, their RMS fluctuations and 

average lobing frequencies; 

(b) mean target centroids, their RMS deviations and average 

meandering rates. 

These and other variables were expressed as functions 

of the aspect angle, radio frequency and of configurational 

details. 
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I.  INTRODUCTION TO THE PROBLEM OF RADAR-TABGET SCINTILLATION 

The radar characteristic known as "target scintillation" 

was defined by Muchmore [11 as a physical phenomenon that consists 

of two effects:  (1) the fluctuation of the rectified amplitude of 

the target echo as observed in the video circuits, and (2) the 

wander of the apparent centroid of target position as generated 

by the output of a tracking circuit.  The scintillation of the 

i5tars also consists of two effects:  fluctuation of magnitude and 

variation of position.  However, it was pointed out by Muchmore 

that the causes of stellar and radar target scintillations are 

distinct.  Star light twinkle is caused by the disturbances of 

the intervening medium (atmosphere) whereas radar aircraft 

fluctuation is produced by the interference between many scattering 

points of a usually complex target.  It will be shown later that the 

properties of a radar receiver also may affect the character of 

** 
radar scintillation. 

For the design of an efficient radar and weapons system, 

it is important to obtain a thorough understanding of the analytical 

* 
In the present report we are concerned with target-centroid wander 
in the angular space of the radar field of view.  However, similar 
methods may also be applied to circuits producing radar range and 
radial range rate (Doppler). We shall follow Muchmore's definition 
of "target scintillation" although some authors deviate from this 
nomenclature.  For instance Barton (Ref. [27]) refers to "amplitude 
noise" as scintillation which other authors call "fading noise." 
The term "glint" is generally applied to "angular noise," the 
quantity "radar jitter" is a collective term that also includes 
the effects of receiver and servo noise. 

♦* 
See Appendix, Sees. A,IV and A.V.3. 
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and statistical character of the target echo.  The latter enters 

into two phases of radar operation.  During the stage of target 

detection and acquisition, the mean radar cross section (abbreviated 

"RCS" in the sequel), its fluctuation and time rate of fading play 

an important role.  The success of this operation can be measured 

and computed by means of tables and graphs of pertinent references 

(cf. [2], [3], [4]).  An important entry of these tables is the 

"category of the target," which is specified by several parameters. 

One important characteristic is the average duration of the fading 

Cl      interval as compared to the pulsa repetition and scanning periods 

of the radar. 

During the target tracking and missile semi-active 

homing stages of a missile-target intercept, similar problems 

relative to radar performance are involved. The IMS fluctuation 

of the mean target centroid and its rate of oscillatory meander 

are both significant and somewhat parallel in concept.  The problem 

of "glint" caused by the erratic wandering of the centroid, especially 

for extended targets at close ranges, is akin to the multiple- 

target problem which has not yet been solved in a satisfactory 

manner. 

The knowledge of hostile target scintillations can be 

obtained (a) by actual flight observations, (b) by static radar- 

ground tests carried out on models and (c) by analysis and 

computation, provided the configuration of the enemy craft is 

known from photos or other means of intelligence.  The present 

analysis belongs to the latter category.  It offers the following 

U 

I! 

D 
n 
U 

[] 
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advantages:  (1) cost reduction by avoiding hardware and test 

operations during preliminary design stages of the defensive 

weapon system, (2) flexibility in the choice of systems 

parameters, and (3) mathematical evaluation of possible schemes 

for dealing with heavily fluctuating targets.  These schemes 

include the selection of polarization, radio frequency modu- 

lation, narrow-band filters the center frequencies of which 

can be adapted to measured instantaneous frequencies, adjustable 

automatic gain controls, etc. 

1 
- 3 
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II.  BACKGROUND OF PAST AND PRESENT RESEARCH 
ON THE RADAR SCINTILLATION PROBLEM 

Various distlact approaches to the problem of radar 

target scintillation can be found in the literature.  The experts 

in the field of radar signatures (K. M. Siegel and collaborators, 

see Ref. [5]), developed an extensive physical and mathematical 

theory by means of which the RCS of a complex structure (consisting 

of hundreds of stations) can be computed as a function of aspect 

angle, frequency and polarization.  Good agreement between analytical 

results and measured radar echoes is claimed.  Some of the under- 

lying assumptions and mathematical principles will be discussed 

n      in Appendix A.I.  The statistical results of this research team 
I I 

are limited to concepts of so-called "first-generation statistics," 

r-r      such as CT (mean cross section) , S (standard deviation of a) etc. 

I;      No use is made of quantities appearing in "higher-dynasty statistics" 

such as multiple Joint distributions, correlation functions ard 

[       spectra. 

! A different type of a statistical theory of aircraft 

I       scintillation was developed by Delarto [6] and Muchmore [1]. 

Their results appear in terms of spectra and probability densities. 

!       However, their theory applies to simple airframe structures that 

can be considered as an assembly of a few individual scatterers 

{ or of a few simple areas of uniformly distributed scatterers. 

Related problems were analyzed in Refs. [7], [20], [211, and [22]. 

p      Some interesting, statistical work was carried out by Robert W. 

!       Kennedy, Major USAF.  He was primarily concerned with radar 

r,      cross sections of simple, satellite-type targets.  (See Ref. [8]). 
H 1 A natural extension of the above-cited work would call 

for a combination of the ideas incorporated separately in the 

1       investigations of the aforementioned research teams.  It would 

then yield, for instance, the RCS spectra of complicated target 

(       configurations.  The preparation of such quantities presents a 

_ 4 - 
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cumbersome computational chore but it can be accomplished. 

However, the results would still be inadequate for the design of 

radars against specific complex targets, for the following two 

reasons: 

(1) "Spectra," in a strict sense, are only applicable to 

stationary processes.  They furnish the mean square amplitude 

densities in the frequency domain, averaged over an Infinite 

interval of time.  The radar operators in the field, however, are 

well aware of the fact that the signatures of slender targets 

vary markedly in magnitude and spectral content when turning from 

broadside to frontal aspect.  What is needed here, is the knowledge 

of temporary signal behavior.  The concept and the analysis of 

"locally stationary processes" will be introduced ai^d utilized 

in the present report to cope with this phase of the problem. 

(See Appendix, Sec. A.Ii). 

(2) Often one deals with complex targets consisting of many 

component scatterers that are somewhat randomly distributed over 

the length of the body.  Radar interference between these scatterers 

generates many nulls which appear randomly distributed in time. 

In the extreme case of a Poisson distribution, these lobes generate 

a flat spectrum according to Ref. [9].  This very fact lies at the 

heart of the multiple-target problem.  If one deals with narrow- 

band targets in the background of wide-band noise, one can design 

narrow-band filters that emphasize the target signals and wash out 

the noise.  If one deals with wide-band target signals,  no 

ordinary filter is helpful.  If one washes out the noiüe one 

filters the target signal as well.  The physical implication of 

this fact is well known to the radar operator in the field.  If 

he tracks two targets of equal strength appearing simultaneously 

and a fraction of a beam width apart, the radar axis will wander 

erratically from one target to the other and sometimes stray 

* 
even if the target turns at constant angular rat3. 

In many references "target signals" are separated into two parts: 
(1) "true target signals" such as "true angular positions" and 
(2) "target noise" such as "glint." For other quantities such as 
the "RCS" a,   this separation is not as simple.  For some variables 
of closed-loop missile guidance, ^his separation becomes even 

arbitrary and depending on the ch. ^.ce of the analyst. 

- 5 - 
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beyond these points until the signal gets lost.  If the receiver 

r      applies a narrow band tracking filter or a slower antenna servo, 

the radar axis still undergoes excursions of the same magnitude, 

'      only at a slower rate.  Apparently what is needed here, in order 

to cope with this difficulty, is a better knowledge of the so-called 

r       "instantaneous frequency" and of other parameters developed by 

S. O. Rice under the heading of "Statistics of the Count of Zero- 

crossings."  (Ref. [10]). J. W. Follin, Jr., of APL proposed to 

apply this segment of Rice's random noise analysis to the problem 

of radar-target scintillation.  The present author performed the 

mathematical analysis connected with this problem and the Conductron 

Corporation carried out the numerical computations, (cf. References 

[11], [12], [13], [15], [19]). 

The major results of this investigation will appear in 

Section VII.  For our specific task a particular type of target 

configuration was chosen and used in our numerical calculations. 

Tactical geometry and the choice of target coordinates will be 

explained in Section III. General definitions and symbols are 

given in Section IV, specific definitions and refined statistical 

notation in Section V.  The underlying assumptions which primarily 

pertain to our special project, are compiled in Section VI.  In 

addition, we used a number of general mathematical principles which 

were very helpful in rendering the computational chores tractable. 

In order not to encumber the main stream cf information contained 

in the major body of this report, mathematical principles and 

pertinent theorems were relegated to special sections of the 

appendix, as were refined details of the mathematical formulation 

of the problem and of the derivation of our formulae. 

- 6 - 
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III.  TACTICAL GEOMETRY AND TARGET COORDINATES 

The tactical geometry and target coordinates are explained 

In Figure 1.  Two cases must be considered: 

(1) Monostatlc Case 

This case refers to the operation of a tracking radar 

and the action of an actively homing missile. The radar-line of 

sight and the target-longitudinal axis form a plane (P) which is 

depicted in Figure 1.  Of special interest are vehicles with 

axial symmetry.  For this special configuration the RCS problem 

becomes two-dimensional since one spatial dimension (Z-coordlnate) 

can be suppressed. 

The choice of the coordinate system is shown in 

Figure 1.  The origin coincides with the nose tip (station "0";, 

the x-axis with the longitudinal axis of the target, and the 

y-axis lies in plane P.  The vehicles are divided into N sections 

whose end points on the contour or some other convenient locations 

are selected as the stations S.  which represent the individual 

component scatterers. 

More details which are important in the analysis are 

sketched in Figure 2. 

Besides the stations Si, the positions of the 

instantaneous centroid S and of the mean centrold U are 

important.  In References fl] and [6], the latter are designated 

as the "apparent" and "effective" radar centers respectively. 

It is convenient to refer the so-called error angles  e.  to the 

line of sight toward S.  Then one has e" = 0.  If the radar axis 

is stabilized toward S, the error voltage, averaged over a long 

period, also vanishes.  The aspect angle Q    is the angle between 

the x-axis and the LOS from the tracker T to S.  The direction 

of the LOS is g.l en by the unit vector U0, the direction at right 

angles to it by the unit vector Ü .  Note that TS and TS.  are 

almost parallel and the angle e.  is very small under "far-field 

conditions." The remaining quantities are indicated in Figure 1, 

and are self-explanatory. 
- 7 - 
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(2) Blstatic Case 

This case refers to the action of a semi-active honing 

interceptor. The target configuration is the same. However, the 

single aspect angle 0 must be replaced by two angles, 0.  and 

0 .  The transmitter angle 0.  is the angle between the illuminator 

LOS and the x-axis; the receiver angle 0  is the angle between r 
the seeker LOS and the x-axls, as indicated in Figure 1.  In the 

definition of the error angles e., the LOS from the seeker to 

the mean centroid S forms the basic reference line in the 

bistatic case, since it is the seeker receiver that measures the 

error voltage. 

y 

- 9 - 
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IV.  GENERAL DEFINITIONS AND SYMBOLS 

In the analysis of radar cross sections as applied to 

the theory of target detection, the following quantities play an 

important role: 

2 
a   is the radar cross section of a body, in m , 

The RCS is    4ir times the re-radiated electro- 
magnetic power,   in watts per steradlan,  divided 
by the irradiated power per unit area,   in watts 

2 per m . 

or   is the Instantaneous RCS of a body computed by 

the method of "relative phase." Where there is 

no confusion likely, we shall simply omit the 

subscript "p". 

a.  is the RCS of the individual component scatterer. 

a   is the mean RCS (Ordinarily, this is a time 

average. F« cy(t)_„. However, CT might also 

be considered as a parameter process with the 

aspect angle 6 or the frequency f representing 

the independent parameter.  The mean then is taken 

with respect to the parameter. ) 

-.J 

Li 

o 

Aa - a - a is the instantaneous deviation of the RCS 

from its m^an. 
—5-1/2 

- (Acr )   in the standard deviation of the RCS. 

(Note: Reference [5] uses the symbol "S".) 
'sd 

0 
0 
a 

In the bistatic case one lias    a 
be defined as a « a (o.(q), 6 (q)3 

a {0,, 0 } and the average can 

av where the averaging 

operation is extended over the parameter q, 

- 10 - 
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crMAX lB tbe maxillUB possible BCS (taken over all 
possible RF-phases for fixed paraaeters). 

In the analysis of radar target glint as applied to 
the theory of target tracking, the following definitions and 

symbols are important: 

(The various stations of the target are indicated by 
vectors or matrix columns.  Vectors are denoted by capitals, 
their components by lower-case letters. Conventional matrix 
symbolism is used; in particular, primes designate transposed 
matrices.) 

•   rxii X. - [x., y.] - I * • position of station S. 

X - [x, y] i position of instantaneous centroid 8 
(slow AGC). 

X - [x, y] - position of mean centroid ? (slow AGC). 

AX. - X. - X - deviation of station S. from ? 

AX - X - X - deviation of instantaneous centroid 
from mean. 

(AX'AX ) - covariance matrix of centroid position 

—s- 1/2 —ö 1/2 
xSd " (AX >   ; ysd " (Ay ) 

Vg - [cos 0, -sin 0] unit vector in the direction 
of the radar LOS.  (0 - line) 

i 

U^ " [sin 0. cos 0] unit vector normal to the 0 - line. 

r - range from radar to target, in units consistent 
with units of x. 

I      ?  
i In this analysis the vectors and matrices are of dimension "2". 

- 11 - 
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As mentioned In Section III, it is convenient to refer the error 

angles e to the position of the mean centroid. Hence 

(AX '.Ü)  n 
e «  *_ . _i . error angle of station S.    (la) i     r      r 1 

(see Figure 2) 

(AX'-U^) 
e  error angle of instantaneous centroid  (lb) 

and, by definition, 

e - 0 (1c) 

1/2 

| ^d " ^ (ld) 

Simple summations extend over all scatterers S. with 

ji      i - 1, 2, ..., N. We shall use the following abbreviations: 

o 
i-i  T 

Double summations extend over all combinations of    i, j -  1,  2, 

...,  N    except terms with the same index: 

1 < i / J < N       Vj l£i<j<N l<j 

- 12  - 
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SPECIAL DEFINITIONS AND SYMBOLS APPLICABLE 
TO RICE'S RANDOM NOISE THEORY 

For the application of S.O. Rice's "Random Theory of 

Noise" (Reference [10]), a few statistical definitions are 

necessary. 

Let z = z(q) be a parameter process.  (In our case, 

z will be the RCS process a(q), while the independent parameter 

q could be the time t, the aspect angle O, or the radio 

frequency f.)  z is the mean of z(q) averaged over q, and 

<z> is the ensemble mean of z(q).  For homogeneous, ergodic 

processes, one has: 

z = <z>. (2) 

The RCS process is a locally homogeneous process 

(locally stationary if q - t), and equation (2) is valid at 

least for a short range of the parameter q.  Let 

Az » z(q) - z . 

Then Az is an unbiased random process. 

The quantity N= NUz|Aq, q, p,...}  is defined as 

the number of zero crossings with positive slope of a sample 

process Az(q)  in an interval I rangiAg from q to q + Aq. 

N itself is a random variable that depends on Aq, q, and possibly 

on some other parameters, such as p, ... ; N = ir{Az|Aq; q, p, ...) 

is the mean of N.  AN ■= N - N is the deviation of zero counts 

of a particular sample process from its mean value. 

\ - Nq Uz;  ,, P. ...) - J£, SlMl^-3. P. •■■) 

See Appendix A.II 

- 13 - 
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Is the aean count of zero crossings per unit of q. IT  is a density 
with dimension q'1. Ngd - Nsd Uq) - (AN2)    is the standard 
deviation of counts of zero crossings with positive slope, taken 
over the interval I. 

A properly defined standard deviation of zero crossing 

1/2 
n     density (or rate of counts) would be: 

I 11 
,„  v m  film  (AN{Aq))21" 
v sd; q  [Aq-O    Aq   j 

- 14 - 
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VI.  BASIC ASSUMPTIONS AND PRINCIPLES USED IN THE ANALYSIS 

The following basic assuraptions were utilized in our 

analysis: 

Basic Assumptions 

(1) The target is a slender, axially symmetrical 

vehicle, 

(2) it consists of many independent scatterers, that 

are randomly distributed alongside the body, 

(3) the linear dimensions of the target and of the 

distances between individual scatterers are large compared to the 

radio wavelength X, 

(4) shadowing effects and multiple scattering can be 

ignored, 

(5) the range r from the radar to the target is 

large compared to the target length, 

(6) the target lies within the regime of linear error 

patterns of the receiving antenna, 

(7) the antenna axis is space stabilized in the 

direction of the mean target centroid, 

(8) the receiver uses slow AGC and square-law 
*♦ detection, 

(9) receiver noise and other types of interference 

are ignored. 

Assumptions (1) through (4) are typical for the special kind of 

targets which we investigated, assumptions (5) to (9) pertain to 

the properties of antenna and receiver and to their geometrical 

relationship to the target. All these premises are very useful 

in simplifying the analytical, statistical and computational 

part of this study, especially if combined with a few mathematical 

and physic! principles which will be listed below and more fully 

discussed in the appendix. 

♦ 
See discussion at the end of Section A.IV. 

*♦ 
cf. remarks in Section A.V.3. 

- 15 - 
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Assumption (1) enables us to ieduce the problem from 

a 3-dimensional to a 2-dimensional Job. Assumption (9) implies 

that receiver noise and target scintillations are statistically 

independent of one another and therefore can be treated separately 

and then combined. 

Mathematical and Physical Principles which Simplify the Analysis 

(a) Far-Field Scattering, 

I (b) Born-Approximation, 

(c) Method of Random, Relative Phase, 

(d) Central Limit Theorem, 

(e) Principle of Local Stationarity, 

(f) Lord Kelvin's Principle of Stationary Phase. 

Items (a), (b) and (c) were effectively used by the 

| O      Conductron Corporation (cf. Ref. [5]) and will be discussed in 

Appendix A.I. The central limit theorem (item (u)) is a conse- 

quence of assumption (2).  It enables us to utilize Gaussian 

statistics. This property and the principle of local stationarity 

(item (e)) entitle us to make use of some results of Rice's random 

noise analysis. Principle (e) was introduced by us for this 

purpose. It is a consequence of assumptions (2) and (?) and will 

be described in Appendix A.II. Lord Kelvin's principle of stationary 

phase (item (f)) is very useful in simplifying the complexity of the 

numerical analysis. In our case, some of the final expressions 

consist of fourfold summations, running over all the coordinates 

of the individual scatterers.  If we deal with 50-100 scatterers, 

the number of terms required for one single quantity as a function 

of a set of fixed parameters (say frequency, aspect angle and 

polarization) may tax the capability of a modern electronic 

computer. The principle of stationary phase enables us to reduce 

quadruple sums to double sums. Details of this method will be 

found in Appendix A TII. 

16 - 
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V!I.  SUMMARY OF MATHEMATICAL RESULTS 

The results will be divided into two main sections 7.1 

and 7.2 entitled "Simple Statistics" and "Refined Statistics" 

respectively. The former contains formulae which were obtained 

previously by other researchers (cf. Refs. [5] and [19]), the 

second main section applies the methods of Rice's analysis to 

the scintillation problem.  The results are believed to be new, 

to the best of our knowledge. 

Each main section is divided into two subsections, 

e.g., 7.1.1 and 7.1.2.  The former deals with quantities of the 

detection phase, primarily averages of radar cross sections, the 

second subsection derives parameters which are useful in the 

tracking problem.  We are concerned with cite  erratic meander 

of the target centroid in the radar's field of view (say in 

azimuth and elevation). 

Logically a third and fourth subsection should follow 

the second one and produce the corresponding parameters in range 

and range rate (doppler).  But these problems were not part of our 

present assignment.  They will be analyzed xn  future projects, 

(cf. remarks of Section VIII). 

7.1      Simple Statistics 

7.1.1 Radar Cross Sections of Fading Targets 

Mean Cross Section 

ä(0) = £ a. (Ö) (3a) 
i 1 

In the bistatic case, the quantity 0 . is replaced 

^y two angles 0.  and 0 . as in equation (3b) and all following 

formulae. 

ö(Öt, Ör) - Ecr^O^ Ör) (3b) 
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Cross Section Peak 

I U aIIAX" ^^ (4) 

0 
n 

I! 
i 1 

RMS Cross Section Spread About Mean 

'sd 
■ % "^ 

1/2 

7.1.2 Radar Target Glint 

3f ? 
Mean Centrold, Using Slow AGC 

(Effective Target Center) 

X1ai 

(5) 

(6) 

Corresponding equations hold for the components of X. 

? Vl 
(6a) 

=  ? ylal 
y - (6b) 

By definition and equation (1c), 

r [(xi-x) sin ©r + <y1-y) cos Or]cJi 

r a 

Covariance Matrix of Apparent Centrold Motion 

(7) 

U (AX AX«)  =  -ME    o.o. (X.   + X.   - 23D(X 
4F2Ll7j     iJ    i        J 

^ + xj- 25D'i     (8) ■1 

o 
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In particular, 

Standard Deviation of Apparent Centrold In x-DlrectIon 

1/2 
sd 1= [£)   W'!   *   *J    -  ^ ^ 

Standard Deviation of Apparent  Centrold In y-Dlrectlon 

|l/2 
ysd - -^ I £ aiai (yi+ yj - ^ sa        2a   L l7j        J J 

2 

Standard Deviation of Measured Error Angle (Slow AGC) 

65(1 "" 2rF L 's* [<»i + x. - 2x) sin ©^ + 
^  • J j      J r 

Ji 
1/2 

(8b) 

+ (yj + yi - 2y) co8 0
r   ? (9) 

7.2     Refined Statistics (Density of Nulls) 

7.2.1 Radar Cross Sections of Fading Targets 

Mean Number of Lobes per Unit of Parameter 

G„   r ol ^2 

V^.pJ-^ll, vAV] (10) 

In application to specific  par-alters and cases, 
Table  1 serves for the computation of    G  .  Table 2 for the 

q 
computation of the  term    ,.^4^. 
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where 

Table 1 

VALUES OF G 

Parameter q Units G, 

Aspect angle 0 

Radio frequency f 

Tiw t 

rad 

deg 

Hz 

MHz 

sec 

k   1 
2,-X 

k 
360 

1 
c 

IQ« 
c 

k  9 

k - 3f . 2l* - ^ is the wave number, 
A C C 

c - speed of light, 
i 
i 

0 =- rate of change of aspect angle in radians/sec. 

The units of X    and c must be compatible with those of a., 

a and a. 

- 20 - 
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Table 2 

VALUES OF    F. . 
 q iJ 

Parameter q Monostatic Case Bistatic Case 

6 

or 

t 

f 

2[(xi-x.)sin 0 +(yi-y.)cos 0] 

2[(xi-x.)cos 9 -(y1-y )sin 0] 

[(x1-x.)(sln et+sln 0r) + 

+ (yi-yj)(cos Ot+cos ör)] 

i;(xi-x.)(cos Ot+cos 0r) - 

-(y^jMsln öt+sln ©r)3 

One example follows: 

Mean Number of Lobes per Degree at Fixed 
Frequency  in the Bistatic Case~ 

Nö{Aa;0t,0r3 - ^ 
'sd 

T    a.a.   (x.-^x.) (si 
. i7j  J L 1 J 

n 0t + sin 0 ) + 

]■} + (yi-yi)(cos 0t + cos 0r) 

7.2.2 Radar-Target Glint 

Mean Number of Centroid Excursions per Unit of 
Parameter in the x-Directlon 

1/2 

1/2 

(10a) 

(11a) 
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In the y-Direction 

iq{4,!(fcrt - ^-[^ Vj^i^-^3Vij)2l 
1/2 

(lib) 

While the last two quantities are not directly observable, 
the following quantity can be measured frois the receiver: 

Mean Nuaber of Error Fluctuations per Unit of Paraiaeter 

Na{e;q,p} - -z-3 \ I]   a.ajcx +x.-2x) sin 0,. + r 

+   (y1+yr2y)  cos Gj2^)2 j 
1/2 

(12) 

One example follows: 

Mean Number of Error Fluctuations per MHz at 
Fixed Angle in the Monostatic Case 

irf{E;0j - -^ 10 
6 

care sd 
1^ «VjK+V250 

+  (y^+y^^y) cos Or 

sin 0 + 

(12a) 

[(x^x.)   cos 0 -  (y1-y )sln 0]' 
U/2 

:   i 

Li 

0 

a 
- 22   - 
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VIII.  APPLICATION OF ANALYSIS, 
CONCLUSIONS AND RECOMMENDATIONS 

Application of Analysis 

The Conductron Corporation of Ann Arbor, Michigan, 

has applied the mathematical results of Section VII to a series 

of specified missiles.  A set of numerical calculations was 

performed for the output quantities listed below as functions 

of various RF-wavelengths, aspect angles and polarizations: 

ä eq. (3a) 

aMAX eq. (4) 

asd eq. (5) 

x eq. (6a) 

x eq. (8a) 
sd 

N Ua;q,p3 eq. (10) 

(1.) for q - 0, p - 0 

(2.) for q =- f, p - 0 
N Ux;q,p3                    eq. (11a) 

(1.) for q - 0, p - 0 

(2.) for q » f, p = 0 

At the same time, the Applied Physics Laboratory under 

the sponsorship of ARPA carried out a parallel RCS measurement 

program at Holloman Air Force Base by static ground tests on models 

of the same specified missiles. Again various RF-wavelengths, 

aspect angles and polarizations were utilized.  What conclusions 

can be reached from a comparison of the theoretical and experimental 

results? 

Reference [19], (c) and (d). 
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even nore difficult to read, extrapolate or guess an 

lobiog frequency" fron the inspection of the test records. 

Before answering the last question, a tew  general 

reaarks are in order. We deal with very complex and extremely 

phase-sensitive structures in the microwave regime. At first 

sight, some of the output quantities appear to fluctuate wildly 

and randomly as functions of certain parameters or i* response 

to slight changes of the configuration.  It is difficult to assign 

a well-shaped spectrum to the output signals. A flat spectrum 

seems to be the closest choice for them at best.  This characteristic 

feature is confirmed by the analysis (see Appendix A.III).  It is 

"instantaneous 

It 

was indeed this difficulty which led to the present ^vestigation. 

In the light of these remarks, the following conclusions can be 

stated: 

There exists a general qualitative agreement 

between tb§ computed and measured quantities. 

In particular theoretical and experimental 

results show the same trends.  For instance, 

the lobing frequency is lowest "head-on" i.e., 

in the direction where the aspect angle 0 is 

zero, it rises with increasing aspect angle and 

reaches one or several maxima in oblique directions. 

The maxima are not fixed for the same missile if 

the radio frequency or polarization are varied. 

As expected the lobing frequency K^ increases 

(a) 

Ci») 

with higher radar frequencies 

parameters are held fixed. 

0 
f,  while the  other 

U 

0 
0 

The discueision of the class of deterministic ana random functions 
which allow an "instantaneous frequency" will be taken up in a 
future report. 
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(c) Provided a diligent mathematical and numerical 

analysis is performed, it appears that the accuracy 

of the important output quantities is sufficient 

for a statistical radar-design and performance 

study concerned with detection, track and 

identification of scintillating targets. 

Recommendations 

The computed quantities referring to the meander of 

the centroid, such as x (eq. 6a), x   ,    (eq. 8a),  N {Ax;q,p3 

|       (eq. 11a) et al., have not been verified as yet by experimental 

measurements.  This should be done, preferably in dynamic flight 

;       tests. 

As mentioned above this analysis should be extended 

to include the scintillation of the outputs of the range and 

range rate (doppler) circuits. 

i The investigation should be generalized to incorporate 

targets containing non-random features, such as periodic sections, 

j       uniformly distributed scatterer segments, etc. (cf. remarks ^t 

the end of Sec. A.III). 

| The effects of body vibrations and.of the slower 

oscillations of the stability, control and guidance loops on 

I       the radar scintillation should be examined (cf. discussion in 

Sec. A.V.I). 

1 Finally, the usefulness of special devices (RF frequency 

modulators, adaptive narrow-band filters with variable center 

i       frequencies, etc.) should be studied.  The objective would be to 

recognize the size, overall shape and attitude of unknown objects 

1      or to identify the signature of well known targets.  Some of these 

]      problems are being studied at the present time and will be 

documented in the near future. 

.1 
] 
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APPENDICES 

A.I.  PRINCIPLES USED IN THE DERIVATION OF 
THE ANALYTICAL RESULTS OP SECTION 7.1.1 

The mathematical results of Section 7.1 eßtitled 

"Simple Statistics," Subsectioa 7.1.1 "Radar Cross Sections 

of Fading Targets" were derived by the research team of the 

Conductron Corporat.'on.  For details of this analysis« Refs.[5] 

and [19] should be consulted.  Here we shall discuss the basic 

principles utilised in this work. 

(a) Far-Field Scattering, 

(b) Born Approximation, 

(c) Method of Relative, Random Phase. 

Principle (a) is based on our assumptions (5) and (3) 

of Section VI.  It simplifies the problems of wave physics and 

in many cases allows the use of plane wave fronts. 

Principle (b) is well known from scattering problems in 

quantum mechanics.  There it becomes applicable, if the interaction 

coefficients are so small that double ana multiple scattering 

involving squares and higher powers of the interaction constants 

can be ignored.  In our case multiple scattering can be omitted 

since we deal with bodies of simple shapes (assumptions (1) and 

(4) of Section VI). 

Principle (c) or the method of relative and random 

phase will be described next.  Following the analysis of Ref. [5], 

page 25 a.f. and using the notation of Section V, one obtains for 

the instantaneous RCS of the target: 

N 

ap= '£, (aj)1/2 exP(i*j>|2 (A.I.I) 
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r 
«here In the »onostatic case 

♦.  -  -2kC(x.-äF)cos © -(y^y^sin 0] + ^ (A. 1.2a) 

in the bistatic case 

♦. - -kC(x -x)(cos Ot+cos 0r)-(y -y) (sin Ot+sln Ör) 3+ ? 

(A.I,2b) 

k Is the wave number explained at the bottom of 

Table 1. 

♦ Is an absolute, Instantaneous phase of the mean 

cent ro id. 

Hi« most diificult part of the analysis is the job of finding 

the magnitude of the individual scattering cross sections a.. 

Hie derivation of Op   and a    proceeds in three steps. To 

describe the method, we follow Ref. [5] closely and verbatim in 

»ny instances: 

First Step - Modeling 

We consider the body under Investigation as an assembly 

of many components each of which can be geometrically approximated 
by & "simple shape" in such u, way that the RCS of the simple shape 

approximates the RCS of the component it models. 

Second Step - Computation of Component RCS 

It is assumed that the RCS of the "simple shape" can 

be computed.  The rigorous method would require a solution of 

Maxwell's equations with known but complicated boundary conditions. 

If en exact solution is not known, one must find an approximate 

solution by some special method. 
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Third Step - Combloatlon of  Individual Ccmponent BCS's 

The final step involves the proper coabination of the 

"component cross sections" to yield the estimate of the cress 

section of the entire body.  Here again it is often necessary to 

find a simplifying mathematical scheme such as the method of 

"relative random phase." It must be emphasized that mathematical 

approximations must be Justified on physical grounds. 

Rewriting eq. (A.I.I) one gets in the monostatic case: 

N  N 
a« ^ ,/L Z^ (^O  cos 2k[(x.-x.)cos 0 -(y.-y.)sin ö] 

-1 

I 
I 
I 
I 
1 
I 
Iff - £ a^ 2 £ (aia,)

1/;äcos 2k[(x.-xi)cos O-Cv.-y^sin 0]  (A. 1.3) 
1     i<J 

It is seen that the absolute, instantaneous phase ^ of the 

centroid disappears from the equation and therefore becomes 

irrelevant. This fact Justifies the term "relative phase." 

A particular procedure of combining individual component cross 

sectiqns is called the "method of random phase." It is based on 

the assumption (see p. 26 of Ref, [5]) that the many different ♦. 

are randomly distributed; then upon averaging over $  one obtains 

the expression 

In the notation of Section IV: 

1/2, 

r t°i (A.1.4) 
i 

which is identical with eq. (3a) of Section VII. 

The reasoning which led to eq. (A.1.4) appears some- 

what vague.  However, one has the feeling that the result is 

physically correct.  One might try to strengthen the mathematical 

argument by 
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(a)  introducing statistical distributions for the x. 

(say Poisson distributions) and independent but 

identical distributions for  the a. (say Rayleigl 

distributions), 

goin^ to the limit ^p - oo , (L is the length of 

the target) 

replacing SUBS by integrals and averaging. 

(b) 

(c) 

Then one winds up with expressions containing Dirac's 
delta functions,  giving rise to analytical difficulties. 

An alternate method of combining wildly fluctuating 
signal components will be discussed in Section A.II. 

D 
D 
0 
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A.II.  PRINCIPLES AND METHOD« USED IN THE 
ANALYSIS OF SECTION 7.2 

Referring back to the list of principles enumerated 

in Section VI, we shall make use of the following items: 

(d) Central Limit Theorem, 

(e) Principle of Local Stationarity, 

(f) Lord Kelvin's Principle of Stationary Phase and 

its Extension, 

Item (d) is based on assumption (2) of Section VI.  If 

we deal with many independent scatterers, whose individual RCS's 

follow independent but equal distributions, and if some other 

conditions are met (such as the existence of first and second 

moments), the RCS of the combined signal in the limit N - «B 

will approximate a Gaussian distribution.  This property is 

important because it enables us to make use of seme results 

obtained by S. 0. Rice in the field of the statistics of the 

count of zero crossings. 

Item (e) is a new concept which was introduced here 

especially for the purpose of coping with the type of signals 

encountered in radar target echoes.  These signals, in the long 

run, or averaged over a long interval of time, display a broad, 

flat spectrum. . Yet we know these signals bear an instantaneous 

statistical character which changes slowly with the parameter 

(aspect angle 0, time t or frequency f), 

The concept of "local stationarity" shall be explained 

on hand of the signal a  (cf. eq. A.I.I). 

N 

,JP P J 
Y    (a.)1/2 expdtj)!2 (A.II.l) 

4c 
Reference  [14],   p.   215, 
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for  sisplicity we choose the «onostatlc case and a one- 

di«tnslonal distribution of scatterers. Accordingly: 

♦. - -2kC(x -x) cos 0] + ^ 

Then (A.II.l) can be rewritten as follows: 

(A.II.2) 

Li 
a«(0) a.)1/2 cos C2k(x.-x1) cos 0] (A.II.3) 

n 

u 

u 

0    is the independent parameter of the real sigual 
process.    Now we introduce two additional independent virtual 

variables    T    and   6: 

a(Q,r,ö) -   r (a.a.)1/2 cosC2k(x.-x.)  cos(© + T + 6)3 
P i*J    1 J J    1 

T is the paraneter-shlft variable in a statistical ensemble 

with the range 0 < x < 2ir and the probability density: 

P(T) - ji 

(A.II.4) 

(A.II.5) 

n u 

ö is the parameter in a locally stationary ensemble with the 

range -A < Ö < +A and the probability density 

P<*) ' 21 (A.II.6) 

! '   I 

LJ 

0 

Irrespective of how small we choose A, we can always 

find a large enough k or k • (x.-x^, so that the argument or 

phase *.. of every cos-term describes the full circle from 0 to 2ir, 

even several times.  In the limit, if kCx.-x.) ■• oo , the process 

a (d) appears as a full random process covering infinite phase 

shift as ö goes through its range -A < ö < +A. In the following, 

we shall always assume that we are close to this idealized situation. 

For lack of other suitable terms, we shall call a process of this 

type a "peculiar process," i.e., peculiar to certain types of 

radar echoes. 

- 34 - 
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1 

Indeed, the peculiar processes share with the flat, 

white noise processes the broad spectrum. Rovever, they appear 

to be more closely related to, but not Identical with the noise 

processes of Reference [16], eq. (12). 

The peculiar processes are not stationary over the full 

ranges of their parameters (0, x).  However, for fixed 0 and T, 

we may define a "local stationarity," by taking a "microscopic 

look" so to speak, at the small range -A < ö < +A of the local 

ensemble.  By making a transformation of the form 

we obtain a process of the parameter B  which is stationary in 

the range 

—T < © < +V. 

This procedure is similar to Newton's idea of forming derivatives. 

To any point P, of a curvilinear function choose an infinite- 

simally near point P« on the curve.  Connect P, with P« by 

a straight line.  The infinitesimal segment Pi^o can then be 

blown up by extending it to a tangential line.  It is well known 

that derivatives do not exist for certain classes of real, even 

continuous functions.  In the same manner, stochastic processes 

do not necessarily possess local stationarity, but the peculiar 

processes enjoy this property. 

The virtual variable T is used in connection with 

ordinary stationary, statistical quantities, such as the auto- 

correlation function, spectrum, etc.  The virtual variable 6 

is used in connection with locally stationary properties, such 

as "instantaneous frequency," "average number of zero crossings," 

etc. 

We can speak of several types of statistical averages 

for a quantity  z of such a process: 
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Th« paraaeter vtl«^} average is indicated by z. 

Ihm  enaeable average is denoted by < z >.  It is veil known 

tbat for stationary, ergodic processes one has: 

a - < z > (A.II.7) 

We have «any real coaponent scatterers. Therefore we 

could also speak of an assembly average z.  In our work assembly 

averages are not required, but total suss over the assembly are, 

which in the simplest cases become Nz. For instance one gets: 

^^^■»»^^P^^S^M^P^^SMI»» 

• 37- NjOj172 ezp (14^)1 

The local ensemble average {Z(0^(T)3 is defined by 

U(O,T)]. l^^L f *> z(o 
-A 

+ T + a) (A.II.8) 

It is important to note that for our type of processes 

the assembly sums change with finite shifts of the-j^al parameter 

0   and of the ensemble parameter T. A rigorous mathematical 

analysis would have to work around Dirac's ö-functions, since 

the processes considered have a flat spectrum in thg  r*r&'. and 

ensemble domain. Our present objective is limited to reducing 

expressions which require exorbitant calculational work^o a 

tractable computational form. Therefore we shall omit further 

mathematical and theoretical exercises at this time. 

Ö 

0 

Generalization of the Principle of Stationary Phase 

The principle of stationary phase was originally 

enunciated by Lord Kelvin as a mathematical artifice to approxi- 

mate infinite integrals of wildly fluctuating functions of the 

type occurring in the hydrodynamic theory of impulsive disturbances 

or wave groups of small spatial extension.  These waves possess a 

broad spectrum. This principle was later cast in a matheraatieal 

rigorous form (see Ref. [15]). 
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. i 

We shall state tbis principle in 2 slightly more 

general forms applicable to our locally stationary processes. 

First Version of Kelvin's Principle 

Given a finite function f{♦} of bounded variation, 

such as the cos-function.  The argument is called phase.  The 

latter itself is a function of two sets of variables:  {m} and 

{x,y,...) 

♦ - ♦ (m;xfy,,.,) 

m is continuous and x, y, ...  assume discrete values only. 

We form infinite integrals over the first variable 

and finite, but large summations over the second set. 

oo    N 

E=  /dm  A f{«(m;x.y.,...)} (A.II.9) 

-oo 

If the phase * fluctuates wildly as a function of m, 

then one can obtain a good approximation of E 

(a) either by integrating over a short range of m: 

ni - A < m < mÄ + A and, or o    —  — o 

(b) by summing over a smaller subset x, , x0 ,... , y, , y« ,... 
o   o      o   o 

of the second set, JO long as the stationarlty of phase holds for 

the two subsets (a) and (b), i.e., so long as the following 

equation is valid: 

^ {m0; x1 ,y  ...3 = 0 for mo and all ^ . y^ •  (A.II.10) 
o "o 

Then 
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m0+A 

■ -A     o' J"Jo o 

(A.II.11) 

The second part (b) of the proposition constitutes the 

generalization of Kelvin's principle. 

atample; Let us apply principle (f) to our locally stationary 

signal a    (eq. A.II.4). The dummy variable <5 is substituted 

for m and x., x. for x., y.. The variables 0 and T are 

not summed here.  In our case 6 runs through a very short range 

already.  Therefore part (b) is expected to play a major role in 

the simplification process. 

Equation (A.II.10) becomes 

0 - ^ C2k(x1. -x. ) cos (Ö + T + ö0)] or 
o  o 

(xi -x. ) sin (0 + T + ö0) - 0    j (A.II.12) 
o  ''O 

Since 0 and T are arbitrary this equation can only be satisfied 

if i - J  or starting with the original set {i,j} one forms 

the subset ti0,J03: 

*Q m  i " if*, ..., N 

Jo« i 

The local ensemble average of a  becomes 

(apJ - ^ (A.II,13) 

U 

0 

Since the parameter 0 disappeared from the right band side of 

eq. (A.II.13), this expression is also the parameter-average a: 

*-k°* (A. II.14) 
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I 

0 

This is the result of Ref. [5] and the content of eq. 

(A.1.4).  In later examples we shall form local ensemble averages 

that *i< not identical with the parameter averages. The use of 

the extension of Kelvin's principle somewhat strengthens the 

Intuitive argument given on pg, 26 of Ref. [5].  The validity of 

Kelvin's principle was proved for a large class of oscillating 

functions by G. N. Watson.  The extension of this principle should 

be treated in a more rigorous form too. But this Job exceeds the 

scope of our present assignment. 

Second Version of Kelvin's Principle 

We shall now describe a second version of Kelvin's 

principle of stationary phase that will be utilized in the following 

section.  In the previous case the phase function contained 2 sets 

of variables: a continuous variable and a set of discrete variables. 

Accordingly the total summation consisted of an integration and a 

finite summation over discrete variables.  In the sequel the phase 

function contains two sets of discrete variables and the total 

summation consists of two finite summations over discrete variables. 

In particular each summation could be a double sum over discrete 

variables, as follows: 

N    N      , 

E =  >"   Y   fteU-.x ; x ,x )3 (A.II.15) 
i,jiln,m»l       3 

Again, if the phase 0 fluctuates wildly as a function 

of the variables, one may get a fair approximation of £, if one 

sums only over a subset  ^x. ,x. : x  ,x  3 of the set {x^x. ;x ,x ] 

for which the phase is stationary or constant: 

*(x, .x. ; x.. .x ) = constant for any choice of    (A. II. 16) io' jo  no mo 
the x-variables within the subset. 

It turns out that in the special applications of the 

following section, the constant vanishes due to the fact that the 

component scatterers x. are assumed to be distributed in a random 

fashion, i.e., umerically placed at incommensurate distances. 

* r 1 Reference  [17] 
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A.III.  APPLICATION OF »ICE'S THEORY TO THE 
COMPUTATION OF RADAR-CROSS SECTION NULLS 

The radar cross section a  of a target which satisfies 
P 

the conditions of Section VI, can be computed by the method of 

relative phase and is given by eq. (A.I.3). With slightly modified 

notation it becomes: 0 
[I       0P " ?ai + ? (alaj)1/2 cos 2k C^i-3^008 0 - (y:j-y1)sin O]  (A.1.3) 

a   ■ a (0) can be considered as a stochastic parameter process 

with the aspect angle 0 playing the role of the independent 

parametei 

given by 

parameter. According to eq. (A.I.4), the mean a    of a  is 

a - £ a< (A. 1.4) 
1 1 

^     Therefore 

I!      Aa - o - ä- T (O.CJ.)
1
/
2 - a - r ^±a.) '     cos 2k [(x.-x^ cos 0 - (y -yi)sin 0] 

^ ^ J       (A.III.l) 

Is an unbiased parameter process. Moreover, it approximates an 

unbiased Gaussian process for the following reasons:  If we hold 

1 fixed, the r.h.s. of eq. (A.III.l) is a sum of N terms T. 

for J - 1,2, ..., N.  Each of these terms follows an Independent 

distribution (according to assumption 2 of Section VI). Further- 

more all finite moments of each term exist, since we deal with a 

finite number of scatterers and the total extension of the target 

is bounded.  Therefore the conditions of the central limit theorem 

are met (see Ref. [14], pg. 215). Hence each term T. with 

_N 

T -I?* i 

approximates a Gaussian distribution as N grows toward infinity. 

1 ' '  
Again the monostatic case is analyzed here for simplicity. 
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The parameter process    Ac?    can be written as 

LO  - 

i.e., as a sum of N Gaussian processes.  Therefore Aa itself — 

according to a well known theorem of statistics — will be Gaussian 

or — more precisely >~~ !*ill approximate a Gaussian process, as N 

tends toward infinity.  A«? is not a stationary process, that is, 

its statistical properties are not invariant toward a finite shift 

of the parameter 0.  However, we le rned in Section A.II that it 

could be considered as a locally stationary process. For any fixed 

choice of 0 we can form a local ensemble with the parameter ö 

and range -A < ö < +A for which Aa behaves like a stationary 

process. 

The process Aa(0) defined by eq. (A.III.l) and described 

in the previous discuc ^lon shall be called an "unbiased peculiar 

process." To bring out the essential features of the analysis asd 

save space at the same ti:^, we shall assume that '%:}.   th?  v^r^oaeul. 

scatterers are distributed over a linear segment  The equations of 

Section VII (Summary of Mathematical Results), however, cover the 

general two-dimensional case. 

The Auto-Correlstion Function ui an unbiased 
Peculiar Process " 

The second version of Lord Kelvin's principle of stationary 

phase (see Section A.II) shall now be applied to the computation of 

the auto-correlation function P(T,0)  of the process ACT(O) , 

c.f. eq, (A.III.l).  Using the average over a local ensemble, 

one gets: 

+A 

p&a(T,0) = 21 /" dö Aa(0f6) Aa(0 + x + ö) (A.III.2) 

-A 

Substituting eq. (A.III.l) in (A.III.2) and reducing 

the problem to one dimension, one has: 

- 41 - 



0    --.. 

n 

; ! 

n 

rvn*c»\j*omKTom 

or 

^a(^ö) i    (   totV    T io^J1'2  (anaB)1/2 

x coeC3k cos  (ÖfÖ) <3c,-«4)]coar2k cos  (0 + ö + T) (x -x ) ] 
j     i an 

^•ö> - ^/ ^ M nL
CvJ)1/2 ^^ 

1/2 

x Cco8[2k cos (öfö)(x4-x4) + 2k cos {@ + d + T) (x„-x )] 

4 cosC23s cos (Ö4-Ö) <x.-xj ■» 2k cos (© + ö + T) (x -x ) ]} 
j     i ran 

(A.III.3) 

{ -J 

Tbe  radar cross sections a, of the component scatterers satisfy 

a certain distribution.  It is well known that the strong scintil- 

lation of radar echoes is caused priiaarily by the interference cf 

phases between the component scatterers rather than by the fluctuation 
♦ 

of the Oj.    of the individual scatterers.  Be it as it may, let us 

assume temporarily that the a.    are constant and equal and their 

variations are absorbed by slight changes of the large kx 

quantities. 

Since J > i and m > n, the coefficients of the cos 

terms in the square bracket of the second line of eq. (A.III.3) 

are positive and therefore the whole expression in the second 

line will vanish since the heavily fluctuating terms cancel one 

another.  A" similar situation prevails for the expression of the 

i 

0 

This property is discussed in Bef. [1], pg. 202. The fact that 
the individual a^ do not depend on 0 is explained by the large 
width of the scattering lobe patterns of the individual scatterers. 
in contrast to the narrow lobes produced by an array of length L. 
The constancy of the individual a*     as a function of the radio 
frequency is pointed out In Ret. [22], pg. 573. 
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third line so long as T > 0, since we assused a completely randoa 
and incowaensurate distribution of the x . However, if T - 0, 

the situation is different. Then there exists a subset 
{xio' xJo; xno' xmo} of the 8et Ui' xJ; Xn' x«} for which tbe 
phase (term in square bracket) is constant, even zero for all 

combinations.  The subset is: 

xio- 
xi 

V- x3 
xno- Xio 

x _ = mo XJo 

i» J " 1> 2, ..., N 

(A.III.4) 

0 

The auto-correlation function becomes: 

15 aiajfor T 
i7

J (A. III.5) 

0 for    T ^ 0 

As N tends toward infinity, p  (T,0) approximates 
a Dirac delta-function for all values of O.  Therefore the 
spectrum becomes wide-banded and flat. This property can also be 
proved by other methods and certainly was expected. However, it 
is highly surprising that one can define an instantaneous frequency 
or rate of lobing for the "peculiar process." This concept is based 
on the noise theory of S. 0. Rice (Ref. [10]). 

The Average Rate of Nulls 

For a Gaussian, stationary unbiased process z(t) with 
correlation function p (T), Rice derived the quantity N.{z), i.e., 
the average number of zero crossings with positive slope (number 
of lobes) per  unit time: 

4t 
Compare discussion in Appendix A.V.2. 
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srt(«> 2? 

1/2 

1  Z    ^T-0 

(A.III.6) 

This concept can be carried over directly to Gaussian, 

locally stationary, parameter processes. For the unbiased peculiar 

processes one obtains: 

1/2 

(A. III. 6a) 

1*0 

Kote:  In the «»-stationary, though "locally stationary" processes 

all quantities depend on the instantaneous value of the parameter 

», The surprising property of the peculiar processes mentioned 

above can now be explained by the fact that while P(T-»0) and 

P(t-*0) tend toward infinity, their ratio remains finite and gives 

the desired value. 

We start with eq. (A.III.3) nnd simplify tie expression 

on the r.h.s. somewhat by omitting the second line which oscillates 

heavily and averages to zero and skipping the integral over the 

range of the local ensemble variable 6    which for the specific 

conditions of our example cancels out. 

^(T'0) -2 & L10^2 "^ 1/2 

(A.III.3a) x cos[2k cos ©  (x.-x.)   - 2k cos  (ö+T)(x -x )] j i m n 

Differentiating eq. (A.III.3a) twice with respect to T, gives: 

P"-<T'W' -2 Ä L(°*)1/2 <^)l/2 

X/cos 2k [cos e(x,-x. )-cos(ÖfT) (x  ~x ) ]• C2ksin(ÖfT) (x -x )] 
j j     i tn    n m    n 

+ sin 2k[cos 0(x,-x.)-cos(dfT)(x_-x„)]•[2kcos(&fT)(x^-x^)]> ji mn mnj 

(A.III.7) 
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Now, we keep n and ■ fixed and vary 1 and J. 

With our special conditions (very large k, randoa distribution 

of the x., relative constancy of a.) the sumatlon over 1. J 
of the terms In the necond line which fluctuate wildly, average 

to zero except for a subset (A) {l0, JO; no, IB0} of i±,i;  n,«): 

no 

mo 
klo 

> 

no 

mo 

(A)   n, m - 1, 2, ..., N (A.III.8) 

For the subset the phases of the cos terss in the second 

line disappear, as x goes to zero.  The same reasoning holds far 

the third line.  Therefore the third line vanishes since sin *   =- 0 n^m 
if *n m ^ 

0-  Combining these results and interchanging i, J 

with n, m one finally gets: 
1 '2 

NeUa;03. ji^ffl 
T  (v/aj/aj)'6,[2k sin 0(x^-xj]^ 

J J 

fovt-W 
(A.III.9) 

This result can be easily extended to two dimensions by 

assuming a two-dinensional distribution of the scatterers, random 

and independent in x and y.  Furthermore instead of using the 

aspect angle 0 as the independent parameter, one may substitute 

the radio frequency f or the time t or any other suitable 

variable q. 

to substitute x =« x^, x =» x^ or 

In the auto-correlation function P.„(T)  one has 

TQ.  Finally f • J " 't ~     ■■' "  '"q for T 

in the derivation of N (Aa;q) one has to apply the second derivative 

of p(x ) with respect to T . The results are summarized in 

eq. (10) combined with Tables 1 and 2 of Section 7.2. Note; While 

numerator and denominator of the r.h.s. of cq. A.III.9 tend toward 

infinity as N grows over all bounds, their ratio remains finite 

and yields a finite and reasonable value, as was shown by a 

numerical analysis carried out by the Conductron Corporation. 
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Iffect of Non-Ratndo« Distribution of the Scattcrera 

If the scatterers are not randomly distributed, ther. 

the reasoning that led fro« eq. A.III.3 to eq. A,III,5,break? iovn. 

Supposing the scatterers display soae periodic features as follows. 

^i+ip " 0i 

xi+(i+l)p ' xi+ip " xi+p " xi " M+l 

(1 

where p is a fixed integer counting the nuaber of scatterers 

within a period and i    is a running integer 0 < i < M counting 

the nusber of periodic sections.  Then one can enlarge the subset 

(A.III.4) by adding: 

! 

!  ! I 

I i 

xno " xio + Jtp 

mo   jo + ip 

(B) * *■ 1, 2, •••7 M 

Furthermore there will exist certain discrete values of 

for which additional subsets 

S,, S«, ..., S^, ... with stationary phase are associated, for 

instance for T. one can construct a subset 3., as follows: 

T, say T,, Tg t   •••» T «» • • • 

xio - xi 

x.. - X, Jo 

no - X io 

mo   jo + tp 

<v i, J « 1, 2 N 

A    is  fixed. 

(A.Ill,10) 

S  ,-"> 

Each index 
condition: 
by an integer 
relation: 

k' 

k appearing in the subscripts, should satisfy the 
0 < k < N,  If this condition is not met, replace k 

k' which satisfies this inequality and the following 

H k (mod N) 
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so that 

cos 0 • (x -xio) - cos K**-TP k^-*,,^ " 0>        (A.III. 11) 

In addition one can also form subsets of type (B). 

The correlation function becomes a sum of Dirac delta 

functions:: 

P(T) - 2d(T-T#)a# (A.III.12) jr^-v ii 

and the radar echo pattern assuaes the well known finger-like 

or fan-like appearance. 
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A.I?. EFFECT OF ÄGC ON THE CHARACTER OF 
CENT^OID OSCILLATIONS 

1. Instantaneous Centroid for Slow AGC 

2T 
Let k - 4i be the wav« nuaber and let ♦. - k(P.-P ) K 1       1  O 

tot    1 - 1, 2, ..., N be the relative phase shift between scatterers 

i and 0. P0, Pj, ..., P^, ..., PJJ denote the two-^ray paths from 

t!n radar to the individual scatterers S , S,, ..., S,, ..., SU 

and back to the radar.  In the nonostatic case, the paths run from 

the tracking radar to the scatterer and back to the same radar.  In 

the bistatic case, the paths extend, e.g., from the illuminator to 

the scatterer and back to the seeker of a semi-actively homing 

missile.  S0 is a reference station, say the nose tip of the 

target or the average centroid position. 

In order to determine the position of the centroid, one 

has to define two vectors V and V  and one square matrix If. 
A 

The matrix U Is defined by its general elesent: 

I ! 

LJ 

Li 

r 

o 
o 
n 

M^ - cos   (*!-*.,);     i,  j -   1,  2,   ...,  N 

where    *.     is the phase angle defined by eq.   (A.I.2a). 

columns: 

(A.IV.l) 

The vectors    V    and    V      are defined by the following 

V - 

/^l 

/■(T 

N 

^x2 

/o^x^. 

VN 

(A,IV.2) 
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c, a2, ..., (^, ..., aw are the radar cross sections 

J     of the individual component scatterers as defined in Section IV. 

The quantities x and x. are used in the present section as 

generic terns that might represent either the x- positions, the 

y- positions or the error angles e of Individual scatterers 

and centroids, as defined in Section IV. 

Making use of the assumptions listed in the beginning 

T     of Section VI, one may write the position of the instantaneous 

centroid x  for slow AGC as follows: s      

V M Vx 
xs ° '<V M V> (A.IV.3) 

The position of the average centroid x  for slow AGC is given s 
by: 

2.      Average Centroid for Slow AGC 

<V' M Vx> 
x8 " <V' M V> (A.IV.4) 

follows: 

The operator (F^,*,,,... f*N)> is defined, as 

2ir  2ir 
<F> " ""Sr /••• f d*ld*2*,-d4kF(*l'*2 V      (A.IV.5) 

o   o 

The denominator of eqs. (A.IV.3) and (A.IV.4) is equal to the mean 

radar cross section a which is given by eq. (3a) of Section 7,1: 

ä - J a. .  / (3a) 
i 1 

Combining eqs. (A.IV.l) to (A.IV.5) and substituting eq. (3a) gives: 

k*Si x
s " ^-^Z  (A.IV.6) 
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Till« foraula is identical with eq. (6) of Section 7.1.2. 

All the results of Section 7.2.2 entitled "Radar-Target Glint" were 

derived fro« it by applying conventional, elementary statistics 

cariblned with Rice's theory of zero-crossings, as expounded in 

Appendix A.III. 

It should be emphasized here that the mathenatical 

expressions for the effects of AGC, as given by eqs. (A.IV.3> 

and (A.iy.4), are sisplified formulations of the actual AGC 

response. A more rigorous formulation must account (1) for the 

fact that the AGC filter has a dynamic response given by an 

operator or a transfer function, (2) for the real gain control 

which is not the inverse of the AGC filter output but is 

represented by a more complicated function. 

11 

3. Instantaneous Centroid for Fast AGC 

A simplified expression for the position of the 

instantaneous centroid x- under the action of fast AGC is 

g iven by: 

V M Vx 
XF " V M V 

(A.IV.7) 

a 
n 
,—i 

] \ 

o 
0 

Substituting eqs. (A.IV.l) and (A.IV.2) in (A.IV.7) gives: 

/a7/a7 cos (*i~#.) 

4. Average Centroid for Fast AGC 

The position of the average or effective centroid 

(A.IV.8) 

under the action of fast AGC becomes; 

-  Z7' MVx\ 'F'xrTnrv (A. IV. 9) 

- 50 
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X? 9a) 

Conbinlng #qs. (A.IV.5) and (A.IV.8) one obtains: 

-^/•"/^••^fT"—      (A*IV• 
AM ^^C08^^^ 

This multiple integral is difficult to evaluate and only 

partial results are known to this author. 

Janes Hanson and collaborators of APL investigated 

problems of this kind.  In one study they applied the following 

restrictions: 

(a) The analysis is linearized. Most angles are 

very small. 

(b) All the a. are variable but correlated.  They 

change as linear functions of time and stay in 

commensurate ratios. 

Then one gets the following result: 

The present author attacked this problem in a different 

way.  Instead of using vectors and matrices, he cast the expression 

(A.IV.9) in the form of complex variables.  Then the following 

result could be easily proved: 

If there exists a dominant component scatterer S n 
with overpowering radar cross section a  ,   i.e.,  for 

(?,> a, + a0 + ... + a , + a , + ... + cr*.        (A. IV. 10) n   i   2        n-l   n+i        N 

one gets 

x-, - x. . (A. IV. 11) 
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This fact is well known for N - 2.  If a radar applying 

"fast" or "instantaneous" AGC tracks two unequal targets within the 

linear regine of its bea» width, then the stronger target becomes 

dominant and pulls the radar axis to its own position. For three 

or «or« unequal targets this fact does not hold true, unfortunately. 

Inequality (A.IV.10) indicates how strong one single target has to 

be In order to pull the radar axis into its own position. 

If one deals with a target that consists of a dominant 

scatterer and a series of minor echo sources, it often seems 

desirable to hit the dominant scatterer.  If this is the preferred 

tactic, then the use of fast AGC appears advantageous. 

Muchmore (Ref. [1]) investigated the effects of AGC 

on radar target scintillation. The author assumed the following 

conditions: 

(a) Simplified target model (one-dimensional, uniform 

echo density) , 

(b) Small error angles, 

(c) No target maneuvers., 

(d) No amplitude noise, no receiver noise, no 

Jamming noise. 

Unter these conditions Muchmore arrived at the conclusion 

that slow AGC is superior.  He showed that very fast AGC may increase 

the scintillation noise density by a factor of approximately three. 

Of course, if these conditions are relaxed, a different 

situation will arise.  In the example given by the present author 

above, condition (a) is rescinded. The craft that possesses one- 

dimensional, uniform echo density, is replaced by a target that 

contains a dominant scatterer and minor echo sources.  In this 

case, fast AGC is advantageous. 

References [7], [23] and [24] Investigated the effects 

of AGC under general conditions where restrictions (a), (b), (c), 

and (d) are partially or completely relaxed. All three favor 
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fast AGC.  Their conclusioa is that under practical tracking 

conditions a fast-actlog AGC will give better tracking perforaance. 

However, if one can afford a sophisticated, flexible 

system, it might be worth-while to adapt the AGC to the instan- 

taneous situation.  For instance, during the terminal flight of 

a missile which is homing on a long target, glint might well be 

the dominant noise source.  If so, it would pay off to switch the 

automatic gain control to a setting with a longer AGC time constant, 
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A.V.  ADDITIONAL NOTES CONCERNING OUR ANALYSIS 

1.       Effects of Vibrations 
III- ■     —i IMlllll  I ■       —^M  ■ ■—■ 

In the derivation of the electrical phase angles $  of 

the individual scatterers (see eq. A.I.2a and A.I.2b) we followed 

the analyses of References [5] and [19].  In the monostatic case 

on^ gets: 

♦ . = -2k[(x.-x) cos O - (y.-y) sin 0] + ^P (A.I.2a) 

Some authors (see References [1], [21], and [22]) modify the 

expressions for the individual phase angles slightly, as follows: 

♦. = »2k[(x -x) cos Ö - (y.-y) sin 0] + a. (A.V.I) 

where the    a.    are statistically independent random variables 
that follow a uniform distribution: 

p(aJ) - ^    for 0 < a.  < 2ir (A.V.2) 

In the target model by J. J. Freeman (see Ref, [21]) 

the random phases a.  are supposed to account for structural 

vibrations and possibly other random phenomena.  The same author 

made a very diligent study of the effects of these random angles 

on tracking performance.  One of his results is that their effect 

on a number of mean statistical output quantities (such as the 

effective tai ^et center, correlation functions and spectra) is 

negligible.  This result is gratifying to our studies, Inasmuch 

as we did not Include the important effects of structural "ibrations 

in the preceding analysis.  However, it can be easily shown that if 

we had introduced expression (A.V.I) containing the random phases 

a.  in our analysis, Instead of equations (A.I.2a) and (A.I.2b), 

we would have wound up with the same results.  For Instance, in 

i i 
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the example of Section A,II, taking the derivative of the phase 

function and equating it to zero (leading to eq. (A.II.12)) would 

have eliminated the constant random phases ^a4C~aA0^ ■     *n *^e 

example of Section A.III, selecting the subset (A,III.4) of terms 

and adding would have canceled the terms of random phases 

[(o.-o.) - (a -a )]  in eq. (A.III.3). 
j  i     m n 

This fact strengthens our argument for the application 

of Kelvin's principle and its extensions in our analysis, since 

we used an approach to the problem which is quite distinct from 

the method of Reference [211. Yet we arrived at the same result 

in the case of the effects of vibrations. 

2.       Remarks Concerning Soeetra 

As explained in Section II, spectra are not included in 

our finil results because they are characteristic properties of 

stationary processes.  We used the concepts of Rice's noise theory, 

such as the average count of zero crossings and other instantaneous 

statistical quantities which are applicable to locally stationary 

processes.  Since we only needed the ratio of spectra in the inter- 

mediate results, we could simplify our analysis by making full use 

of assumptions (2) and (3) of Section VI. We idealized the radar 

echo signals by assuming: 

M - oo (A.V.3) 

where L is the length of the target, N is the number of 

scatterers and X    is the RF wavelength. As a consequence of 

the limiting relation (A.V.3), the spectra of the radar echo 

signals became wide-banded and flat,similar to the spectra of 

"white Gaussian noise processes." 

In contrast to our work, References [1], [21] and [22] 

computed spectra as part of their final results.  Muchraore 

(Ref. [1]) applied the conditions enumerated in Appendix A.IV, pg. 52, 

and computed for the normalized spectrum of the IF target signal 

the following expression: 
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wIF(f) 
=4- for f -f < f < f +f 
2f       o m —  — o m 

I." otherwise 

(A.V.4) 

The normalized video spectrum becomes: 

wv(f) = < m      m 

0  otherwise 

(A.V.5) 

The scintillation bandwidth f  is given by: 

f = r- 0 cps . m  A. 
(A.V.6) 

L is the length of a slender,strip-like target which is 

positioned at right angles to the line-cf-sight and turns with 

a constant rate of n radians per sec,  f  is the carrier 

frequency. 

Freeman (Ref. [21]) computed the spectrum of the 

angular-error signal under similar conditions except that in 

his case the probability is 1/2 that the target turns with a 

positive rate (+0) and 1/2 that it rotates with a negative 
* rate (-n).  The spectrum in normalized form becomes: 

We(f) 
5J- [1 + (1- ^-)3] for 0 < f < 2 fm 

m m 

0  otherwise 

(A,V.7) 

Again, the scintillation bandwidth before the filtering action 

of the servo, is given by (A.V.6).  There is no discrepancy 

between these results and the findings of our Section A.III. 

This result is Identical with eq. (21) of Muchmore (Ref. [1]) 
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If —-    tends toward infinity (relationship A,V.J> , a fortiori r- 

tends toward infinity.  Hence the bandwidths f  of the afore- 

mentioned spectra due to eq. (A.V.6) grow over all bounds, in 

agreement with eq. (A, III.5), computed for N - oo . 

It is interesting to note that the average time rate 

of counts N  is simply related to f  by: 

N. « c • f (A.V.8) 
t      m 

where c is a function of the target configuration, of the 

pertinent variables (0, f, t) and of the quantity that is counted. 

If the target resembles the model of references [1], [21] and [221 

(one-dimensional, uniform distribution of scatterers), then the 

constant c can be readily computed.  This job is being carried 

out at the present time and will be documented in a separate 

report. 

3.      The Use of a Square-Law Detector 

The present analysis (see assumption (8) of Section VI) 

and most pertiuent References ([1], [6], [21], [22]) use square- 

law detectors in their investigations of radar target scintillation. 

Since many modern radar receivers apply linear envelope detectors, 

it is well to dedicate a few thoughts to the implications of this 

procedure. 

The situation can best be summed up by a statement of 

M.I. Skolnik (Reference [26], pg. 431) and we quote verbatim: 

"In general, the difference between the two (detectors) is small 

and the detector law in any analysis is usually chosen for 

mathematical convenience." This fact is borne out by the mathe- 

matical derivation and graphical description of the continuous 

parts of the spectra of the two detector outputs, in Reference [25]. 

Comparison of Figures 3.13 and 3.14 of this reference indicates 

that there is indeed little difference in the shapes of the two 

spectra. 
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Similar to our discussion regarding the selection of the 

AGC (Sec. A.TV), the choice of the type of detector is dictated by 

the tacMrj,! situation and the noise environment.  If one can afford 

a sophisticated, adaptive system, a more detailed analysis is 

warranted.  The following remarks are added with this objective 

in mind. 

Delano (Ref. [6]) made a study for the case where 

angular scintillation is dominant.  He obtained the following 

result:  Let T\    be the rms centroid fluctuation about the mean 

radar center for a system using a linear envelope detector and Tj1 

the equivalent quantity for a square-law detector.  Then 

a*. 
T) 

- .88. (A.V.S) 

This improvement of 12% for a square-law detector applies to the 

final stages of missile flight where target glint might become 

dominant. 

What is the situation at the early stage» of flight, 

say during detection and acquisition? J. I. Harcum (Ref. [3], 

pg. 211) made a study of the optimum detector law.  For the 

early stages of flight where receiver noise is dominant and the 

S/N-ratio is small, he found that a square-law detector closely 

approximates the ideal device.  In contrast, for the cases where 

the S/N-ratio is large (say during later stages of tracking) a 

linear envelope detector gives ideal performance.  This result 

agrees with the findings of R. A. Smith (Reference [28]).  Let 

p.- and Py be the signal-over-noise ratios for the IF-stage 

and video-stage respectively, using a linear detector, and let 

pi-, and pA be the equivalent terms for a square-law detector. 

Then for large signal-over-noise ratios, i.e. , p.-, = p' -• OD 

he finds: 

2 and ^V 

'IF 'IF 

I 
2 (A.V.IO) 

i f 
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The iraproveraent by a factor of 4 in favor of the linear 

detector is not as significant as it appears, because for noise- 

less signals, the type of detector becomes irrelevant. 

However, in a practical problem, the specific noise 

environment should be carefv:lly scrutinized and the system 

designed accordingly. 

4,       Remarks Concerning the Counting of Lobes 

The mean count of lobes or the average rate of nulls 

was defined in Section A.II for a Gaussian, locally stationary, 

unbiased process by the average number of zero crossings with 

positive slope per unit of the independent parameter and given by 

Rice's formula (A.III.6),  If the process is biased such as the 

uni-polar video signal of the target echo, the formula can still 

be used but must be applied to the unbiased process which is 

formed by subtracting the mean value from the biased process. 

(See Figure 3). 

However in some cases (see Figure 4), eq.(A.III.6) will 

n^t give the count of lobes or nulls properly.  If one is interested 

in the number of lobes or nulls in a strict sense, then one should 

count the maxima or minima of the process z(q).  Eq. (A.III.6) 

has to be replaced by another formula of Rice (cf. eq. (3.6-6) of 

Ref. [10]).  One gets for the average number of maxima per unit 

of parameter q (say 1 sec or 1 rad or 1 Hertz)  the term M (z;q): 

1/2 
1 |PZ

(4><^<1) 

L-Pz(T;q) 
(A.V.ll) 

T-0 

For specific targets (A.V.ll) will lead to expressions similar in 

appearance as eqs. (10) to (12) of Section VII.  However the 

mathematical and numerical computations will be slightly more 

complicated. 
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/N z(q) 

Figure 3 

Mean Value of z 

Mean Number of Zero-Crossings per Unit^ of Parameter q of 
Unbiased Process AZ = z - z. Here N (Az;q) » 10 (zeroes 
with positive slope). ^ 

Figure 4 

z(q) 

Mean Value of z 

Q Parameter 

Mean Number of Maxima (Lobes)_ per Unit of q of Unbiased 
Process _Az - z - z. Here N (Az;q) - 6 (zeros with positive 
slope) M (Az;q) = 11 (Maximaqor Minima), 
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If the theory is applied tc slender (one-dimensional) 

targets consisting of many, independent scatterers following a 

random, uniform distribution, eq. (Ä.V.11) yields a quantity IT 

which is roughly 50% greater than the quantity N  computed by 

eq, (10) of section ^11 

On the other hand, the latter result was based on a flat 

video-spectrum or a Dirac delta-function correlation (see eq. (A.III.5) 

of Appendix A-III),  References [1], [21], and [22] showed that the 

video spectrum can be taken to be triangular (cf, eq. (A.V.5)).  In 

many cases it is tapering off even more sharply.  If our results 

are adjusted for this effect, one has to reduce M  by roughly 

33%. 

Combining these two adjustments for slender targets with 

many independent, uniformly distributed scatterers one obtains the 

following result:  Eq. (10) of section VII yields an M  which in 

practice yields the count of maxima (lobes).  This fact is born 

out by experimental measurements.  Details of analytical, numerical 

and experimental results will be documented in future reports. 
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